Beating Waves Experiment II (BWXII) Russell Burton #### Outline - * Define problem - * Show experimental setup - * Discuss upgrades ### Big Picture - * Efficient ES wave heating - * Applications - * Plasma thrusters - * Efficiency is CRUCIAL #### Electrostatic Wave Heating - * When $f_{es} = f_{ion}$ energy transfer occurs - * Landau dampening - $* f_{ion} < f_{es}$ ion gains energy - $* f_{ion} > f_{es}$ ion loses energy - * Take advantage of velocity distribution ## Beating Waves - * Beat 2 ES waves $f_{es1} - f_{es2} = n(f_{ion})$ - * More efficient at high energies (?) - * Ben Jorns' Thesis - * Not (yet) experimentally verified ## Part II: Experimental Setup Photo courtesy of EPPDyL #### Laser Induced Florescence (LIF) - * Measures T_{ion} - * Operation: - * Send in laser light - Emitted photon is Doppler shifted - * Analyze frequency intensity - * Infer ion temperature #### Langmuir Probes - * Measures T_e and electron density - * Operation: - * Applies voltage to plasma - * Measure/plot V against I - * Extract T_e, electron density ## Part III: Upgrades * Recall: testing high energy levels #### LIF Upgrade - * Parallel and perpendicular temperatures - * Motivation: - * Gauge anisotropic temperature - * But Zeeman Splitting - * Broadens spectral lines - * Jumbles temperatures data - * Fix with circularly polarized light #### Langmuir Probe Upgrade - * Issue with single probe: - * RF interference - * Draws current from plasma - * Solution: double probe - * Measures current across two tips - * Does not depend on floating potential ## Beating Wave Antenna #### Beating Wave Antenna - * Maximize efficiency of radiated energy - * Update old design - * Was for planar waves - * Test theory - * Use square Helmholtz design #### Antenna Comparison - * Examine complex impedance - * No vessel, no live tests - $* Re{Z}_{square} < Re{Z}_{plane}$ - * Less energy into heat - * Reactance_{square} > Reactance_{plane} - * Stronger B fields launched #### Caveats - * Different wave structure launched - * HELIX group had helicon plasma - * Will be tested this year #### **Works Cited** - * Jorns, Benjamin. "Plasma Heating with Beating Electrostatic Waves." Diss. Princeton University, 2012. Print. - * Kline, John L. "Resonant Ion Heating in a Helicon Plasma." Thesis. West Virginia University, 1998. Print. - * Kline, John L., E. E. Scime, P. A. Keiter, M. M. Balkey, and R. F. Boivin. "Ion Heating in the HELIX Helicon Plasma Source." *Physics of Plasmas* 6.12 (1999): n. pag. *Aip.org*. American Institute of Physics, 26 Aug. 1999. Web. 30 Sept. 2013. http://pop.aip.org/resource/1/phpaen/v6/i12/p4767_s1. - * Owens, D.K. "Lecture IV: Langmuir Probes"